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Abstract A description is given of a natural (Kanusyak mountain 
torrent, Carpathian Mountains) and of an anthropogenic (Baby Yar 
mountain torrent, Kiev) shear debris flow. Analytical and numerical 
methods of investigation of a St Venant-type dynamic model describing 
these natural phenomena are studied. The advisability is shown of a 
preliminary asymptotic solution of the modelling problem with the aim 
to determine the numerical modelling method, to reduce the amount of 
computations and to increase the efficiency of debugging the application 
program package. To check the reliability of the mathematical 
modelling, information is used about debris flow determined from its 
tracks.

INTRODUCTION

Shear debris flows occupy a special place among natural and anthropogenic 
geodynamic and hydrological processes in mountains and gullied regions. They 
possess the highest denudation energy, are most destructive and often lead to 
losses of human lives. Such a shear debris flow took place in the Kanusyak 
mountain torrent in the Ukrainian Carpathian mountains in 1969 and an 
anthropogenic debris flow occurred in the Baby Yar mountain torrent in Kiev 
in 1961 and led to the death of 145 persons.

Because of the lack of an optimal monitoring system, data on the 
dynamic characteristics of debris flows are incomplete. Only morphometric 
(geometrical) characteristics of the flows are determined with useful accuracy. 
This necessitates the application of special methods to determine debris flow 
characteristics, one of the methods being mathematical modelling based on a 
hydraulic scheme developed by Grigoryan (1979), Mironova & Eglit (1988), 
and Danilova & Eglit (1977). The model enables a set of time-varying 
characteristics to be obtained in any section of the transit zone: depth, cross- 
sectional area, velocity and discharge of debris flow.

Data on shear debris flows and the basic results of their mathematical 
modelling are presented in the paper.

fWe regret to announce the death of Dr Yablonskiy in February 1992.
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BASIC DATA ON SHEAR DEBRIS FLOWS

The Kanusyak mountain torrent is located on the slope of the mountain with the 
same name in the Gorgany mountain ridge at a height 800-1200 m above sea 
level. The source area of the debris flow is formed by strongly weathered 
flysch sandy loam deposits. A source area with a volume of about 70 000 m3 
was formed by the shearing of a soil block on 8 June, 1969 following a rainfall 
of more than 200 mm in 24 h. The length of the source was about 230 m, the 
slope of the bed in the source area was about 20-28°. The debris flow 
comprised a mixture of lumps of soil, stones, gravel, sand, mud and clay. Fine 
earth washed from the surface of the basin formed a gliding surface at a depth 
about 10 m along which the block of soil forming the debris flow slid off. 
Water runoff took place on the same surface during the storm.

The transit reach is about 630 m long. Its slope is 18-20°. The bed 
consists mainly of thick-layered poorly destructible sandstone. The channel 
cross section is trapezoidal. To compute the characteristics of the debris flow, 
a section located at the end of the transit reach was selected. The dimensions 
of the flow section are as follows: maximum depth of the flow is 8 m, width 
at the top is 17 m, the area of the cross section is 84 m2. The slope of the flow 
surface in the transit reach is equal to the slope of the bed.

Debris deposition begins 30 to 40 m downstream from the control 
section. The deposits have a complex shape: they fill the offing of the flow 
100 m in length and also form the debris cone at the bottom of the valley into 
which debris flows. The maximum depth of deposition at the vertex of the cone 
is 16 m. The volume of the debris flow deposit was about 70 000 m3.

The Baby Yar Ravine is located on the outskirts of Kiev. Hydraulic 
emplacement of soil was carried out in the upper part of the ravine via a 
pipeline in the postwar period (1950-1961). Altogether about 3.5 million m3 of 
strongly moistened sandy and loamy soils was stored from 125 to 165 m above 
sea level. In the morning of 13 March 1961, the earth-fill dam which was 
holding the soil failed and about 600 000 m3 of soil began to move. A flow of 
mud mixture traversed a path of about 1600 m along the ravine bed. Buildings 
and houses were destroyed, an area of the city of about 25 ha was blocked with 
deposits. The maximum depth of deposition was about 4 m.

A control section was located at a distance of 1440 m from the downstream 
boundary of the source area. The maximum depth of the flow in this section was 
7 m, the cross-sectional area was 420 m2. The slope of the transit part of the bed 
was about 0.57-0.37°. The cross section of the flow was trapezoidal .

Data have been prepared for both shear debris flows characterizing 
distribution of the amount of friable fragmental material (debris) along the 
bottom of the source area, the morphometry of the path, soil density in the 
source area and in the state of motion. For the Kanusyak torrent the latter was 
taken to be equal to 2300 kg m’3 and for Baby Yar 1500 kg m'3.

Maximum flows of debris of 554 m3 s'1 (Kanusyak) and 2200 m3 s’1 (Baby 
Yar) have been computed using Yablonskiy’s mean velocity calculation formula.
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The time distribution of depths, cross-sectional areas, velocities and 
volumetric discharge of debris flows for control sections have been obtained 
from the mathematical model of debris flow motion described below. The 
modelling has made it possible also to carry out the analysis of possible shear 
mechanisms and to determine in which part of the source area (upstream or 
downstream part) the loss of soil stability occurred and in what succession the 
elements of the source area began to move: beginning from the upstream 
border of the source area or from the downstream one.

STATEMENT OF THE PROBLEM OF MODELLING DEBRIS 
FLOW IN A BED WITH TRAPEZOIDAL CROSS SECTION

A hydraulic model of the St Venant type described by Danilova & Eglit (1977) 
assuming a constant density of debris flow mixture in all parts of the flow is 
used to describe the motion of debris flow. The mass and momentum conserva
tion equations have the form: 

dA 
~dt

d , . x+ -Z- G4v) 
dx = <1 (1)

dv dv .1— +v— = gsina- — 
dt dx A

dF, 
1 dx 3
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where t is time, x is distance along the bed, A is cross-sectional area of debris 
flow, v is mean cross-sectional velocity of the flow along the OX axis, q is 
volume of mass deposited by debris flow per a unit of length in a unit time, g 
is acceleration of gravity, a is angle of bed slope with respect to horizon, 
F2, F3 are parameters associated with friction, change of level in the flow, 
pressure from side walls of the bed.

For a bed with trapezoidal cross section, A, Fïy F2, F3 can be written as 
follows:

A = bh + 0.5h2 (tan/31 + tan/?2)
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where b is the width of the bed bottom, h is the depth of the flow along a 
perpendicular to the bed bottom in its axial point, /31; ß2 are the angles between 
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the perpendicular and the walls of the bed, k, g are coefficients of hydraulic 
and dry friction, f is the wetted perimeter of the bed, t* is limiting value of 
dry friction stress, h* is the height of the flow at which dry friction stress 
reaches the value of t* as shown by Grigoryan (1979), p is the mean value of 
debris mixture density. The path of a debris flow can be conventionally divided 
into three zones: initiation, transit, deposition. A flooded block of friable soil 
whose shear has caused debris flow is located in the initiation zone. The transit 
part for shear debris flows is characterized by debris flow acceleration at an 
insignificant (negligible) increment of mass (volume). The deceleration of 
debris flow and its complete stopping comes about in the deposition zone, i.e. 
q # 0 in the mass conservation equation (1) in this zone whereas q s 0 for 
the first two parts.

Debris flow motion is considered under the following conditions: no soil 
inflow takes place at the trailing edge of the flow

A = 0, v = 0, x = 0 W

incorporation of soil is also absent at the leading edge of debris flow

A = 0, v = w (5)

where w is the velocity of the leading edge of the debris flow.
Conditions (4) and (5) are characteristic of a pure shear process.

ASYMPTOTICAL SOLUTION OF ST VENANT EQUATIONS FOR 
DEBRIS FLOWS IN A BED WITH TRIANGULAR CROSS 
SECTION

Let us consider the asymptotical solution of equations (l)-(5) for a debris flow 
in a bed with triangular cross section with constant geometrical parameters with

q = 0, b = 0, h<h*, R = 0
(6) 

a(x) = a, ß^x) = /3p ß2(x) = ß2

The asymptotical method of solving equations (1) and (2) involves a 
change-over from equations (1) and (2) to kinematic wave equations by 
Lighthill & Whitham (1955). The latter are obtained from equation (1) and 
simplified equation (2) in which the differential terms are eliminated and they 
have the following form according to (3), (6):

+-^-(h2v) = °, v=fi[h
dt dx

f= (g/cosa)/2/c, I = [sin(/3j+ /32)tana/(cos/31+ cos/î2)]-g > 0

Using the method of characteristics by Bakhvalov & Eglit (1973) for the 
solution of (7) and assuming that the whole mass of debris is concentrated in
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point x = 0 at time t = 0 (Hunt, 1984), we obtain:

h = 16x2/25/2Z2, v = 4x/ty, 0<x<t? <8)

where is the coordinate of the leading edge of the debris flow.
Solution (8) is correct if a debris flow has a sufficient extension along its 

axis and the parameter distribution in it is such that the mean velocities and 
depths of the flow vary smoothly (Woolhiser & Ligget, 1967) and also the 
stability condition of wave solution (8) is met (Whitham, 1958) which has the 
form:

16x > I > 0 (9)

It follows from (8) that the height of the flow is maximum at its leading 
edge h = > 0, x = y but according to (5) h = 0 at x = ij. Thus, there is
a break at point x = r¡ whose structure is described by the solution of complete 
equations (1) and (2) smoothly changing h from h to zero (Galin, 1959). This 
solution has the form:

-£ = sin(/3j +ß2)|7z+/z))ln(l -h/hv)]/[sin(ßl + ß2)tana
-^(cos/3j +cos/?2)]

(10)
v = w, If = w2f2, % = x-wt

In constructing (10), it was assumed that the motion in a narrow zone 
corresponding to a break of wave solution (8) is stationary in the system of 
coordinates £= x — wt moving integrally with the leading edge of the flow 
at a velocity W (Bakhvalov & Eglit, 1973).

Coordinate y and velocity w of the leading edge of debris flow are 
determined from the condition of constancy of volume:

v
j zldx = V
o

(11)
i? = 5/2[4W(tan/3t +tan/32)]]/5Q7)4/5

w = — = 4t)/5t (12)
dr

Equations (8)-(12) are asymptotic solutions of equations (1) and (2) with 
conditions (3)-(6).

The relationship between the maximum area of the flow cross section in 
a particular section and debris volume V follows from formula (11):

A = 5K1 (13)

It is seen from formula (13) that Av (and therefore hf do not depend on 
coefficients of dry and hydraulic friction and are determined only by the 
volume of debris flow mixture and by the location of the control section.
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Now let us assume that the motion of the real debris flow takes place in 
a bed with a triangular cross section and with constant geometric parameters 
and all conditions are met at which the asymptotic solution is constructed. Then 
it follows from (13) that at given = 84 m2, t; = 630 m and = 420 m2, 

= 1440 m the value V is equal to 10 584 m3 for Carpathian and 120 960 m3 
for Kiev debris flows, respectively, which makes up about one fifth of the 
whole volume of debris mixture of each flow. Therefore, the initiation into 
motion of debris forming soil in each of the bases considered above cannot 
proceed from the top downwards along the valley profile. It proceeds from 
below upwards in the form of separate portions.

The presented asymptotic solution of St Venant’s equations in view of the 
idealization of the conditions does not pretend to be a quantitative description 
of the complex natural process of debris flow but it can serve as some prompt 
for the development of the general plan of numerical simulation of debris flow 
using computers.

RESULTS OF NUMERICAL SIMULATION OF DEBRIS FLOWS

The program package LAVINA based on equations (l)-(5) was used for the 
numerical simulation of shear debris flows (Mironova & Eglit, 1988). Problems 
have been solved of reconstruction of debris flow motion from the limited 
observed data available.

Only a few versions of numerical computations have been required to 
confirm the fact that the mathematical model should be accepted as the final 
one in which, as in the asymptotic solution, the loss of stability of the friable 
material of debris flow source area begins in its downstream part. This 
common character of the asymptotic and numerical methods manifests itself 
especially clearly for debris flow in Baby Yar.

Generally, a special feature of the numerical model algorithm is the 
check for the equality of the computed values of the area of the flows cross 
sections and the volumes of the debris flow to the values measured under field 
conditions by the traces of debris flow. Besides, the agreement was estimated 
between the maximum discharge and the maximum discharge determined using 
Yablonskiy’s formula for velocity computation.

A selection of numerical values of mathematical model parameters k, 
t*, T*/p was carried out with regard to the available data on the physical 
properties of debris mixtures as well as with regard to dimensions of sections 
of formed flows. Thus, the value of coefficient y characterizing the impact of 
dry (Coulomb’s) friction was taken to be approximately equal to the tangent of 
the slope angle of the surface of undisturbed debris deposits. For the Kanusyak 
debris flow, it was finally taken that = 0.026 and for the debris flow in the 
Baby Yar torrent v = 0.001. Parameter k characterizing hydraulic friction is 
equal to 0.1 for the Carpathian debris flow and 0.03 for Baby Yar.

In the real debris flows being considered, the motion of the debris 
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mixture was carried out without considerable destruction of soils along the beds 
of the flows, therefore it is correct to take into account the influence of dry 
friction stress t* in equations (l)-(3) combined with the value of debris density 
p in the form of parameter rip. The calculations have shown that this 
parameter is insignificant for these debris flows. This is associated with the fact 
that the depths of formed flows have been much less than h*. As in asymptotic 
solution, a variation of the values g and r¡ has practically no impact on the 
values of flow depths. The value of debris flow velocity depends substantially 
on these parameters.

Figures 1 and 2 illustrate the variation of the main characteristics of 
debris flows for control sections obtained as a result of the numerical 
simulation. Of interest is a regular decrease of the maximum depth of the flow 
in sections as we move away from the source area in Baby Yar mountain 
torrent which is shown in Table 1.

Thus, the numerical simulation has shown a clear picture of a spreading 
debris wave in the process of motion which also agrees with the results of the 
analytical solution by formula (13).

Fig. 1 Variation of cross-sectional area A, mean cross-sectional velocity v and 
volumetric discharge Q of the Kanusyak debris flow (Carpathians) with model 
parameters ¡i = 0.260, k — 0.100, r*/p > 30 m2 s'2.
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Fig. 2 Variation of depth h, cross-sectional area A, and mean cross-sectional 
velocities v of the Baby Yar debris flow on 13 March 1961 with model 
parameters ¡i = 0.001, k = 0.030, 7*/p > 10 m2 s'2.

FUTURE WORK

In the future, the mathematical modelling of debris flows should be extended to 
the process of debris mixture deposition. Such solution should be represented by 
a two-dimensional model taking into account the spreading process of the debris 
mixture over sites with small slopes or over horizontal sites. The LAVINA 
application program package makes it possible to carry out such computations.

Of interest is the use of the results of the mathematical modelling of 
debris flows in real debris flow forecasting systems with the application of 
automated systems for the collection and processing of current information on 
the state of debris flow basins.

CONCLUSION

Mathematical modelling of the motion of natural catastrophic processes of

Table 1 Values of maximum depth of debris mixture flow computed with model 
parameters p = 0.001, k — 0.030, r*/p > 10 m2 s'2.

Distance of cross section from top of source area x (m) Maximum depth of flow h (m)

440
620
820
1220
1440

13.52
13.18

9.97
9.42
7.16 
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avalanches in nature makes it possible to obtain important information about the 
time variation in different sections of the main flow characteristics: depth, 
velocity, flow rates which are very difficult (and often impossible) to observe 
and measure in a natural situation.

Combined analytical (asymptotical) and numerical modelling methods 
mutually enrich each other. Asymptotical methods should be used at the first 
stage of the modelling which will substantially accelerate the debugging of the 
application program package.

Taking into consideration the urgent need for debris flow monitoring 
systems comprising automated processes of observation, collection and 
processing of information and the forecasting of the state of debris objects, 
mathematical modelling makes an important contribution to the problem of 
improving the warning of dangerous phenomena.
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