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Abstract Experiments have demonstrated a lognormal distribution for 
scale parameters of soil water characteristics. Based on the distribution 
theory of random variables in statistics, some scale parameters not of 
lognormal distribution are identified in this paper. Representative 
Elementary Length (REL) is proposed to evaluate dominant processes 
across land scale units affected by different precipitation inputs. The 
implication is explored by synergetic theory. With distance between 
precipitation stations ranging from less than REL (threshold) to larger 
than REL, a length variable controls whether a catastrophe occurs and 
whether the system changes from dependence to independence. Semi
variance theory is used to calculate REL and is successfully applied to the 
design of a remote precipitation station network of the Yanghe Reservoir 
Basin of China.

INTRODUCTION

Scale theory was developed from dimensionlessness and was first proposed by Miller 
& Miller (1955) for applying the similarity principle to non-saturated soil water 
movement dynamics analysis. It was expected to be able to simulate field soil water 
movement in the laboratory. Although this expectation was only partially realized, it has 
found a wide application in studies of spatial variability.

Scale theory is based on the similar media concept of fluid dynamics of porous 
media. That is, if there is similarity between any two points within a study area in terms 
of volume and shape, and if the geometry distribution of the soil porosity and the soil 
moisture are the same, the two points are said to have similarity. All of the soil physics 
parameters can be expressed by a scale factor that represents the scale change of 
microscopic characteristics. In other words, the microscopic characteristics of one 
medium are equal to the microscopic characteristics of another medium multiplied by 
a constant, i.e., a scale factor. Although the soil moisture values are the same when 
there is geometric similarity, the characteristics of soil water movement are different at 
different points because the curvature radii are probably different.
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Based on the interface concept (Liu, 1993), this paper deduces the scale method in 
a new way; some considerations on the distribution of scale parameters are given. A new 
scale concept of Representative Elementary Length (REL), which is well explained by 
synergetic theory, is proposed to evaluate the dominant processes across land scale units 
affected by different precipitation inputs. The concept of REL is applied successfully to 
the design of a remote precipitation station network in the Yanghe Reservoir Basin of 
China.

THE DEDUCTION OF SCALE METHOD

Based on interfacial theory (Liu, 1993), a new deduction of the scale method that does 
not need an arbitrary characteristic length (Nielson & Erh, 1973) to introduce the scale 
factor is proposed in this paper. The suction or matrix, is simplified as the capillary 
force at the interface between soil water and air inside the capillaries:

\[/ = — cos0 (1)
r

in which a is surface tension, r is capillary radius, and 0 is the touch angle between soil 
water and the wall of a soil capillary. Within the soil, a and 0 can be regarded as 
constants. From equation (1), at any two points or for any two similar media, i and j, 
there exists:

\L .r. - \1/ r- (2)rnu i Yny j v 7
and then:

= Kr <3>

in which 4/m is the average of point matrices and r is the average of point radii. If 
a¡ = r¡/r, which is called the scale factor, then:

K = <4>

The direct definition of a, as r¡ Ir is the main difference between this method and 
other deductive methods. Within an area, the values of a¡ at points are different from 
each other, which has been identified to have lognormal distribution by field data 
simulation using the Monte-Carlo Method (Luxmoore & Sharma, 1980).

THE DISTRIBUTION OF SCALE PARAMETERS

Based on scale theory, some scale parameters are formulated as:

K¡ = a¡K (5)

ft = i6)

5f = a}'2S (7)
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A¡ = a2Â (8)

in which K, S and A are hydraulic conductance, infiltration rate, and the two 
parameters of the Philip infiltration formula, respectively. According to Nielson, et al, 
(1986), Smith & Hebbert (1979) and Zhang & Cundy (1989), all of the above para
meters also are of lognormal distribution based on their experiments. A lognormal 
distribution, however, can not be identified by the distribution principle of the function 
of random variables of statistics. Specifically, if a random variable, ß, is of normal 
distribution, its probability density function (pdf) is:

fß(y) = —Jz=exp(-(y-gy)2/(2ay)) -oo<y<oo (9)

in which a is the mean square deviance, gy is the mean and y is the value taken for ß. 
As the scale factor, a, is of lognormal distribution, the probability density function of 
a is:

fa(x) = ---- exp(-(lru-My)2/(2ay)) 0<x<oo (10)
xayV27T

in which x is the value taken for a. To identify the distribution of the above scale 
parameters, two other random variables are introduced as $ = C^a2 and r) = CvaA;
and Cy are constants. It is assumed that z> is the value taken for £. From = C^x2, we 
get x = g^(z^ = +(z$/cyA. Here g$ is the opposite function. Because x is non
negative, we take its positive value. That is:

x = 4’(ZP = h/Ci

Based on the distribution principle of the function of random variables of statistics 
(East China Technical University of Water Resources, 1980), there is:

W =4^1(^)]|^i1(zpi = 4(^)1-^  ̂I 
uz^ uz^

= -=J------- exp{ -[1/2(lnz{ -InCp -^(2^)} • «AyÇq (12)
yzj/cj <jy\[2T

= -----1-= exp{ -[In^Zj/q ) - A4y]2/(2ffy)}
2ay^2ir

Equation (12) is not a pdf of a lognormal distribution, and it is seen from this pdf 
that hydraulic conductance, K, infiltration rate, f, and the parameter, A, are not all of 
lognormal distribution. From = C^, we get x = (z,/Ç,)2 = g^’*(z,).  Then:

•W = I -¿-gfa) I

=WQ23I¿-kVQ2JI (13)

= -----^=exp{-[ln(z„)2 -ln(C,)2 -My]2/(2aJ)]}
ZnayV27T
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Equation (13) also is not a pdf of lognormal distribution. Therefore, parameter S in the 
Philip infiltration formula also is not of lognormal distribution.

Quite a few field research results (Nielson, et al., 1986; Smith & Hebbert, 1979; 
Zhang & Cundy, 1989) have shown that the distribution of all the above parameters is 
as the same as that of scale factor a, i. e., of lognormal distribution. What we can get 
from the contradiction is that the scale theory is waiting for further study.

Considering the contradiction, we propose a new concept of Representative Elemen
tary Length, REL, to solve a real case scale problem in the Yanghe Reservoir Basin. 
REL is not a substitute for the former scale concepts, but is simple and easy to use.

REPRESENTATIVE ELEMENTARY LENGTH (REL)

Concept

The problem of how to get average values from point data is often faced by us and we 
often divide a study area into sub-areas according to points in which data are available. 
With the points increasing, the distance, D, between the points decreases. With the 
number of divided sub-areas increasing gradually, a sub-area ultimately reaches a point 
where differences within the sub-area become meaningless and a scale exists that we 
define as Representative Elementary Length (REL) (Liu, 1993). If the sub-area scale is 
smaller than REL, the spatial variability within the sub-area is evident and it is 
impractical to get the average using the weight for point data. If the scale is larger than 
REL, the representation of point data for average is questionable.

Wood et al. (1988) proposed the concept of REA (Representative Elementary Area). 
They found that if the area of sub-basins is less than 1 km2, the relation between precipi
tation and runoff is strongly affected by topography, soil and spatial variability of 
rainfall intensity. If the areas of sub-basins are larger than 1 km2, however, classic 
statistics can be used to study the spatial variability of the areas, and the basin responses 
can be simulated by simple models. In fluid dynamics of porous media, the concept of 
REV (Representative Elementary Volume) is often used to deduce macroscopic equa
tions from microscopic equations by averaging (Baveye & Sposito, 1984). The meaning 
of REL is similar to REA or REV, all of which have a synergetic implication. REL is 
the most explicit and can be calculated by semivariance.

The synergetic explanation

Synergetics was proposed by Haken (1977). According to this theory, when a natural 
process is continuing and further progress is indeterminant, it always proceeds between 
some collective motions. There always exists spontaneous and irregular independence 
of motion in sub-systems, and the motion of one sub-system is synergetically related by 
other sub-systems. With the change of control variables, CV (here, the distance between 
points or the areas of sub-basins), there is always a threshold (here, REA, REV, or 
REL). If a system approaches this threshold, independence becomes weaker and correla
tion becomes stronger. At the threshold a catastrophe occurs from disorder to order, or 
vice versa.
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Calculation by semivariance

REL can be calculated by semivariance theory. In any two points of space, x and x(D) 
(D is distance between the points), if the values of some characteristics of the points 
(precipitation, in our following real case) are Z(x) and Z(x + D), the semivariance 
function, y(D) (Journel & Huijbregts, 1978), reads:

y(D) = (‘/2)var[Z(x)-Z(%+D)] <14)

in which var[Z(x) - Z(x + D)] is the variance of the difference between Z(x) and 
Z(x + D). It can be estimated by:

7 * (O) = l/PMD)] £ RJ,) -Z(xf. +D)]2 (15)
1 = 1

in which 7*(Z>)  is the estimated semivariance, and N(D) is the pair number decided by 
distance!), assuming that the random function, Z(x), is stationary. The relation between 
the autocorrelation coefficient, R, and semivariance, 7, is:

7(D) = <¿[1 -R(D)] (16)

where R = 0, 7(Dmax) = a2, and Dmax is REL.

Case study

A real case study involves a remote precipitation station network design of the Yanghe 
Reservoir Basin, Hebei Province, China. As the cost of building a remote precipitation 
station is high, it is better to choose as few remote rainfall stations as possible. An 
inadequate network of stations, however, gives bad representation and therefore an 
optimum choice was generated by REL. Precipitation data from 1968 through 1988 were 
available for 11 stations within the basin. Using stationary analysis (Liu, 1993), the 
spatial distribution of precipitation in the basin was shown to be stationary. Dividing the 
precipitation data into two groups, Z(xz) and Z(xz + Z)), and applying equation (15), we 
developed a relation between 7 and D (Table 1; Fig. 1). The semivariance model was 
simulated as:

7(D) = 13.91D1355 (the unit of D is 5.17 km) (17)

from which REL, i.e., Dmax, was calculated as 21.4 km based on equation (16). It is 
seen from Fig. 1 that there is a threshold between 20 and 30 km.

Notwithstanding the sample number of 11 being not enough for statistical analysis, 
the REL calculated here is meaningful to network design of remote precipitation stations

Table 1 Relation between semi variance function, y(D), and distance, D, between stations.

D(5.17 km) 1 2 3 4 5 6 7

7(D) 13.65 37.75 64.16 84.23 100.43 208.8 179.9
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Fig. 1 Graph showing the semivariance function of precipitation, Yanghe Reservoir 
Basin.

of this basin. Based on the REL and using step-by-step regression analysis, principle 
components analysis, grey system theory and an isohyetal map, 8 of 11 precipitation 
stations were chosen (Fig. 2). The results were adopted by the project Diverting 
Qinglong River Water to Tide Over Water Shortage of Qinhuangdao City.

CONCLUSIONS

Considerations on scale theory are given. Scale parameters of hydraulic conductance,

Fig. 2 Map of the Yanghe Reservoir Basin with the eight sites chosen for remote 
precipitation stations.
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infiltration rate, and Philip infiltration parameters are shown to be not of lognormal 
distribution, which is opposite to earlier field research results.

A new scale concept, Representative Elementary Length, is proposed. Its synergetic 
implication with other similar concepts of REA and REV is explored. It is easily 
calculated by semivariance theory and was successfully applied to network design of 
remote precipitation stations in the Yanghe Reservoir Basin of the Peoples Republic of 
China.
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