WORLD METEOROLOGICAL

ORGANIZATION

Innovation in Hydrometry – from ideas to operation

IAHS MOXXI and WMO HydroHub joint meeting 2017

December 4th and 5th, Geneva, Switzerland

Back to the future of stream gauging

When innovating stream gauging techniques are historic techniques revisited

Jérôme LE COZ

Irstea, Hydrology-Hydraulics, Lyon-Villeurbanne, France

Darwinism in hydrometric instrumentation?

The current-meter evolution

Woltmann (1790) Graëff (1883)

Albert Ott (1885)

Price AA Pygmy (USGS)

SEBA F1

Ott Nautilus (electromagnetic)

SonTek Flowtracker (hydroacoustic)

Ott ADC (hydroacoustic)

Has the daily life of field hydrologists much changed in 100 years?

From Alexandre Hauet (EDF-DTG)

Floats / Surface velocimetry

Leonardo Da Vinci (ca 1500) L'Hôte (1990), Biswas (1970)

Floats used by Leonardo (a) and Mariotte in 1686 (b)

Di Fidio & Gandolfi (2011)

LSPIV applied to a crowd-sourced drone video

Le Coz et al. (2016)

Image orthorectification

Graphical image orthorectification for stream gauging

Bureau (1910)

Image orthorectification using Fudaa-LSPIV software

Le Coz et al. (2014)

Pitot tubes

Hydrotachymètre Ritter (1892)

Technicians using a Pitot-Darcy tube

Darcy and Bazin (1865)

Darcy's Pitot tube design (1858)

Brown (2003)

Pressure-Operated Electronic Meter POEM (NIWA, New Zealand) Smart (1991), Magirl et al. (2009) ⁶

Rising floats / bubbles

Rising float (empty iron sphere)

Bureau (1910)

Nozzle on bed

Hydrometric pendulum (inter-comparison exercise in the Po River, 1716–1721!!)

Guglielmini (1690)

Storz (2016)

Flood gaugings in Ethiopia 8

Velocity head rods

(1944)

Wilm and Storey

Drost (1963)

Transparent velocity head rod Pike et al. (2016)

Fonstad et al. (2005)

Taking more and more distance from the river?

In-situ streamflow measurements and stations remain absolutely necessary to the establishment of reliable streamflow series

Taking more and more distance from the river?

How to **combine** satellite remote sensing with in-situ measurements and hydrodynamical modelling?

Monitoring and management of freshwater resources has long depended upon on-the-ground measurements. Satellite remote sensing has brought new complementing capabilities. In this final of three debates, *Science* invited arguments about the appropriate roles for, and balance between, each approach.

Famiglietti et al. (2015) versus Fekele et al. (2015), Science

Taking more and more distance from the river?

- Future SWOT satellite will provide river stage, slope and width
- Slope-area models could be applied to satellite data with limited numbers of stream gauging data

4e-05

3e-05

2e-05

1e-05

0e+00

Traditional twin-gauge station to cope with variable backwater

Madeira at Fazenda, Brazil

Bayesian stage-fall-discharge model (Mansanarez et al. 2016)

Does the 'stage-coach' effect hold for hydrometry?

Before a technical invention becomes accepted as an innovation, old protocols are applied to new techniques (Jacques Perriault)

Thank you for your attention!

The first train carriages were shaped like stage-coaches and compatibility was ensured

