

On the use of electrical conductivity (EC) to support water quality evaluations in rivers

Paolo Benettin¹, Andrea Rinaldo,^{1,2} and Boris van Breukelen³

¹Laboratory of Ecohydrology, École polytechnique fédérale de Lausanne (EPFL), Switzerland ²Dipartimento ICEA, University of Padova, Italy ³Department of Water Management, Delft University of Technology, The Netherlands

MOXII workshop | 4-5 Dec 2017

water quality at the catchment-scale

how water and solutes move through a watershed

displacements + biogeochemical processes

measuring solute transport in catchments: some problematics

Revealing the <u>structure of the hydrochemical response</u> of a catchment: need for <u>high frequency solute concentration measurements</u>

measuring solute transport in catchments: some problematics

Technology is no longer a limiting factor

but economic and management efforts can still be a barrier

to high-resolution water quality instrumentation.

Some drawbacks of high-frequency instrumentation:

- high installation costs
- high maintainance costs
- need for special power supply
- (possibly difficult management of large amounts of raw data)

value of EC measurements

cheap + easy to use = hundreds of datasets from many places in the world

Examples

- NADUF program, CH
- LoVoTECS project, NH, USA
- CAOS project, Luxembourg
- USGS water quality surveys
 - •••

Traditionally used to estimate total dissolved solids (TDS)

EC measurements at the Chamberonne stations

EPFL

Large variations in TDS during storm events

can we make **EC** useful for active solute monitoring and modeling?

methods: decomposing EC into ion contributions

Classic interpretation of EC:

$$EC = \sum_{i} EC_{i} = \sum_{i} (\Lambda^{0} m \gamma_{EC})_{i}$$

- Λ^0 molar conductivity
- *m* molar concentration
- γ_{EC} electrochemical activity coeff.

Reformulation:

$$EC(t_k) = \sum_{i} a_i C_i(t_k)$$

$$f_i(t_k) = \frac{EC_i(t_k)}{EC(t_k)} \xrightarrow{\text{algorithm}} f_i(t)$$

$$C_i(t) = \frac{f_i(t)}{a_i} EC(t) \qquad \text{estimate of solute concentration at high frequency starting from continuous EC measurements}$$

Benettin and van Breukelen, 2017, ES&TL

a proof of concept

Solutes can be **RANKED** according to their relative contribution to EC

 \rightarrow search for patterns in individual solute contribution

data from Plynlimon UHF, UK

a proof of concept

ACTIVE use of EC to reconstruct higher-frequency solute behavior

...deploying networks of EC probes? measuring EC of precipitation? ...can EC be integrated in transport models?

application to Plynlimon UHF dataset, UK

future developments

Innovation

Generating new Algorithms, Developing Sensors for streamflow, precipitation (and more?)

Creating a protocol for the routine use of EC to complement water quality monitoring programs

 \overleftrightarrow

Developing a methodology to use EC in the calibration of transport models

discussion and conclusions

- EC embeds a lot of information (besides this particular approach)
- early application is promising
- many opportunities for further development
- low-cost technology
- applications are likely to be site-specific
- applications are likely to be solute-specific
- need to 'train' the algorithm
- EC sensors: durable, but maintanance is still required
- EC signal easily clouded by point sources (road salting, sewage discharge...)

still need for extensive testing in diverse environments

