Rivers and lakes monitoring from space

The **HYDROWEB** water levels database. Example of an operational use over the Congo basin.

Jean-François CRETAUX, Muriel BERGÉ NGUYEN – CNES/LEGOS Stéphane CALMANT – IRD/LEGOS Adrien PARIS, Lionel ZAWADZKI, Nicolas TABURET – CLS Toulouse Philippe PACHOLCZYK, Philippe MAISONGRANDE, Nicolas PICOT, Alice ANDRAL, Selma CHERCHALI - CNES

Context

- Innovative water elevation from space : from local to global, homogeneity of data, free data access, time series since 1992
- Altimetry data, as a complement of the in-situ network

→ What is the spatial and temporal variability of inland water at global scale?

Demography 1	Water scarcity and non-
→ demand on freshwater	uniform distribution
Transboundary river basin	In-situ network
→ availability of data	homogeneity, quality ?
Climate change : impacts, mitigation, adaptation ?	Need of an integrated water resources management

Continuity guaranteed after 2030

 \Rightarrow Long times series

Principles of radar altimetry

Water height = Satellite altitude - Range- Geoid

Sentinel-3a raw data over the reservoir of Manicuagan (Canada) → Virtual station

Footprint size \rightarrow land contamination \rightarrow river width limit

Principles of conventionnal radar altimetry

http://hydroweb.theia-land.fr

Rivers : 962 operational virtual stations and 1 218 in research mode Lakes : 64 operational lakes and 91 in research mode.

- Time series since 1992 Specific product for lakes : surface + lake volume variation
- In **2019 : massive densification** over rivers in Europe, Asia, South America and over lakes worldwide.

Included in the **Copernicus** Land Monitoring Service and soon in the Climate Change Service

http://hydroweb.theia-land.fr

Example of altimetry data available every day over the Congo basin

NEW PROCESSING FOR THE LATEST ALTIMETERS

- Open Loop tracking mode for Jason 3 and Sentinel 3
- ~65 000 potential virtual stations worldwide. On-going work to qualify each of them
- → key to inland waters observation and small lakes & rivers

Open up avenues to an operational altimetry

Source : Sophie Le Gac et al., OSTST 2018.

11) © cnes

60.0

cm upstream

A breakthrough in the altimetry: the SWOT Mission

12)

© cnes

Surface Water and Ocean Topography

- NASA–CNES–CSA mission ; **dedicated to inland water** and oceans.
- Ka-band SAR interferometric system with 2 swaths, 50km each + Nadir altimeter (Jason class)
- 21 days repeat-cycle, Launch Sept. 2021
- Co-registrated all weather 2D imagery of water levels rivers (width >100m) and lakes, reservoirs and wetlands (surface > (250 m)²)
- Height vertical accuracy of 10 cm (100m/ 10km) for rivers

Global coverage :

- ➔ First global inventory of all terrestrial water bodies
- → Global storage change
- → Global change in river discharge

FREE ACCESS to all data and products

Congo basin = 2nd world largest basin

- 3.8 Mkm²
- •10 countries

~30 in-situ station

- Integrated water resources management?
- Water available for agriculture, navigation, fishing, drinking water, hydropower, ecology ?

- Satellite data as a complement to the in-situ network
- Available for all

Operational use of altimetry data: the Congo basin

Applications and services :

navigation, integrated water resources management, hydropower.

AFD

LEGOS

Gee

Ingénierie

cnes

Operational use of altimetry data: the Congo basin

1600

1800

BRL

CNR

CLS

LEGOS

ETUDE DU POTENTIEL HYDROELECTRIQUE DU BASSIN DU CONGO

ESTIMATION DE LA DENSITE DE PUISSANCE (kW/km) - DECOUPAGE AU DROIT DES STATIONS VIRTUELLES

DOWNSTREAM

AFD

Office Internation de l'Eau

Importance of in-situ data :

- Needed for calibration and validation purposes
- Can be installed almost everywhere
- Satellite data as a complement to the in-situ network

Continuous improvement in water elevation from altimetry: accuracy, processing, size of water bodies

Operational use of altimetry data now possible.

Proof of concept made over the Congo basin : great satisfaction from local authorities

In development in other large basin (Niger, Chad, Senegal).

The SWOT users preparatory program:

- To ease the use of spatial data in hydrology land use, water bodies surface, soil moisture, snow cover, water quality, etc.
- To leverage new services and applications

jean-francois.cretaux@cnes.fr

stephane.calmant@ird.fr

San Joaquin-Sacramento delta Copyright ImaginEarth

17 © cnes