Using a Reputation System to Produce Trustworthy Rainfall Estimates from Crowdsourced Data:

A Case Study in Durham, North Carolina

Alexander B. Chen

Jonathan L. Goodall

Flooding is becoming commonplace in cities worldwide

Personal Weather Station (PWS)

Humidity

Wind speed

Rainfall

	Agency Rainfall Networks	PWS Networks
Owner	Trained Personnel	Hobbyists
Siting	Adhere to specific standards	Based on owner's effort
Sensor Type	Certified sensors	Based on affordability
Calibration	Rigorous	Unknown
Maintenance	Routine	Unknown

((•)) Tink Lab, University of Virginia KVACHARL114 About this PWS | Report | Comments

Forecast for Charlottesville, VA > 38.033 -78.511 > 571 ft

PWS Data PWS Widgets WunderStation Current Conditions Station reported 1 minute ago 5.0 Feels Like 68.9 °F 45 °F 5 43% 0 in/hr **30.05** in Waxing Gibbous | 99% Illuminated

View WunderMap

Weather History for Charlottesville, VA [KVACHARL114]

How can we trust personal weather stations?

View WunderMap

Weather History for Charlottesville, VA [KVACHARL114]

Trust:

Collective opinion of neighboring PWSs about the behavior of a subject PWS

Crowdsourced Personal Weather Station **Areal Rainfall Estimation** Good Poor Method Trust score

Trustworthy Rainfall Estimate

Reputation System for Crowdsourced Rainfall Networks

Consensus

Score

Partition PWSs into groups that report similar data

Method: *k-Means*

Input:

Latitude

Longitude

Elevation

Partition PWSs into groups that report similar data

Method: *k-Means*

Input:

Latitude

Longitude

Elevation

Consensus

Score

Consensus

Find the consensus and the deviation from the consensus within the cluster

Method: Robust Averaging

Simple Average (t) = 35.9

Robust Average (t) = 40.4

Cooperative metric $C_i(t) = \frac{W_i(t) - W_i}{\sigma(W)}$

 $W_i(t)$: robust weight \overline{W} : average weight

 $\sigma(W)$: std weight

Cooperative behaviors Non-cooperative behaviors

 $C_i(t) > 0$

 $C_i(t) < 0$

Consensus

Score

Score:

Manages and represents reputation information

Method: Beta Reputation System

$$f(p|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

TS(Trust Score) ~
$$E(p|\alpha, \beta) = \frac{\alpha}{\alpha + \beta}$$

Initial neutral trust score

$$TS_{t=0} = 10 \times E(p|1,1) = 5.0$$

Input: Cooperative metric

If
$$C_t > 0$$

$$\alpha_{t+1} = \alpha_t \times ff + C_t$$
, $\beta_{t+1} = \beta_t \times ff$

If $C_t < 0$

$$\alpha_{t+1} = \alpha_t \times ff$$
, $\beta_{t+1} = \beta_t \times ff + |C_t|$

Forgetting Factor(ff): $0 \le ff \le 1$

Output: Trust score

$$TS_t = 10 \times E(p) = \frac{\alpha_t}{\alpha_t + \beta_t}$$

$$TS_{t+1} = 10 \times E(p) = \frac{\alpha_{t+1}}{\alpha_{t+1} + \beta_{t+1}}$$

4 trustworthy vs.1 untrustworthy PWS

Trust score evolution

3 trustworthy vs.2 untrustworthy PWSs

Trust scores evolution

Reputation System Results

Case study:

Durham, North

Carolina, USA

Legend

- USGS Rain Gauge
- ▲ NOAA rain gauge
- PWS

5 2.5 0

5 Kilometers

107 PWSs Morrisville
149 days of rainfall data

K-Means cluster using longitude, latitude, and elevation

Trustworthy Rainfall Estimates

2018/07/29 Rainfall Observation (inch)

2.2

2.56

2.37

PWS Trust Score < 5.0

Replace the observation with the robust average

1 0.5 0 1 Kilometers

0.89

Trust Score IDW

0.011 - 0.84

0.85 - 1.4

1.5 - 1.8

1.9 - 2.3

2.4 - 3.2

1 0.5 0

1 Kilometers

Esri, HERE, Garmin, @ OpenStreetMap contributors, and the GIS user community

All 149 Days

Days with rainfall > 1 in

Method	RMSE(in)
Simple IDW	0.313
Trust Score IDW	0.225

Method	RMSE(in)
Simple IDW	0.611
Trust Score IDW	0.361

Conclusion

- Crowdsourced PWSs are filling in data gaps of agencies data but introduce trust gap for utilizing them
- A reputation system method can effectively bridge this trust gap by evaluating the trustworthiness of the crowdsourced PWSs
- Using trustworthy rainfall estimate method can improve the knowledge of rainfall patterns in areas with dense PWSs

Questions?

Acknowledgement:

This research is supported by the National Science Foundation under Grant No. CBET-1735587

Alexander B. Chen

abc8fq@virginia.edu

UVA Hydroinformatics Group https://uvahydroinformatics.org