

IAHS

Università di Cagliari

Evaluation of GPM satellite precipitation against observations in Sardinia and Sicily (two major Mediterranean islands)

Domenico Caracciolo^{1,2}, Antonio Francipane³, Francesco Viola¹, Leonardo Valerio Noto³ and <u>Roberto Deidda¹</u>

- 1. Dipartimento di Ingegneria Civile, Ambientale ed Architettura Università di Cagliari, Cagliari, Italy.
 - 2. Regional Environmental Protection Agency, Cagliari, Italy
- 3. Dipartimento di Ingegneria Civile, Ambientale, Aereospaziale e dei Materiali, Università di Palermo, Palermo, Italy.

MOXXI Conference 2019 – March 11th – 13th March 2019 – New York

Global Precipitation Measurement (GPM) mission

Global Precipitation Measurement (GPM) Core Observatory was deployed on February 27, 2014 by a joint effort of the American and Japan aerospace agencies (NASA and JAXA), as a successor

of TRMM.

The GPM spacecraft collect data from an **international constellation** of about ten **partner satellites** to provide new-generation global observations of rain and snow.

We analyse post real-time "Final" IMERG run:

- 0.1° spatial resolution (≈10 km)
- half-hour temporal resolution

Satellite-based estimations can **deteriorate** when spotting precipitation in **costal areas** (land-sea transition) and in areas with **steep orography**.

Thermal-induced lift in land-sea boundary Topographic-induced lift in steep orography

Condensation Gravation Alacama desert

To investigate GPM performances under these problematic conditions, we selected **the two major islands of Mediterranean Sea**, i.e. **Sicily** and **Sardinia**.

Indeed, the combination of geographic position, **climate**, **shape** and **morphology** of both islands represent an interesting opportunity for the validation of satellite-precipitation data in the European mid-latitude area and in **complex domains**.

Study areas – Elevation maps of Sardinia & Sicily

Sardinia and **Sicily** (about 2,5 x 10⁴ km²) are characterized by **long see-land transition borders** and **complex morphology**.

We test **2-year** (2015-2016) *GPM-IMERG v04 "Final" products* against Thiessen interpolation of *dense raingauges networks*: **0.1° spatial resolution - hourly and daily aggregations**

Preliminary analysis on cumulated precipitation

Spatial maps

Cumulated precipitation **in time** (2-years, 2015-2016), same 0,1° spatial resolution

Temporal evolution of MAP

Cumulated precipitation depths of daily **MAP** (Mean Areal Precipitation) over the whole islands

Indices of performances (on hourly and daily data)

SL	continuous> precipitation valuescategorical> precipitation occurrencesvolumetric> volumetric occurrences
Continuo	CC S-RMSE S-MBE Computed on hourly and daily time series
ical	POD
	FAR
ate	
Ŭ U	VHI
etric	VFAR
₹ T	VMI
volt	VCSI

Hourly precipitation, continuous indices

Metrics calculated on the the **hourly time series in each 0,1° grid-cell**: GPM IMERG precipitation <-> interpolated-raingauges data

14

12

10

8

0

-0.5

-1

S-RMSE

S-MBE

C)

e)

$$CC = \frac{\text{cov}(P_{est}, P_{obs})}{\sigma(P_{est}) \cdot \sigma(P_{obs})}$$

^{>16} *S*-*RMSE*, standardized root mean square error

^{0.5} *S-MBE*, standardized mean bias error

$$S - MBE = \frac{\sum_{i=1}^{n} (P_{obs}^{(i)} - P_{est}^{(i)})}{\sum_{i=1}^{n} P_{obs}^{(i)}}$$

Indices of performances (on hourly and daily data)

precipitation values continuous precipitation occurrences categorical volumetric
volumetric occurrences volumetric categorical continuous CC **S-RMSE S-MBE** POD FAR **MISS** CSI VHI **VFAR** VMI VCSI

Computed on True-False **contingency tables** classifying occurrence above thresholds set to the 5th and 50th percentiles of non-zero precipitation at each pixel

event forecast ?

Computed on cumulated precipitation values categorized by contingency tables with 5th and 50th % thresholds

1	event occurred ?		
	yes	no	
yes	hit <i>h</i>	false alarm f	
no	miss m	quiescent or null event q	

Hourly precipitation, categorical and volumetric indices

Comparison of hourly *GPM* satellite precipitation and interpolated-raingauges data by categorical and volumetric indices

Scatterplots of *S-RMSE* at hourly time scale vs elevation for each raingauge.

The higher the elevation, the higher the accuracy

Performances and sea-land transition

Grid-cells were grouped into two samples:

only internal pixels

Results from continuous indices for each (internal/costal) sample:

	Sardinia		Sicily	
Indices	Coastal	Internal	Coastal	Internal
CC	0.29	0.35	0.22	0.27
S-RMSE	12.60	10.83	13.46	11.77
S-MBE	0.20	0.13	0.17	0.11

Errors are larger in coastal pixels

Statistical tests on the mean discriminate the two samples:

Internal 🚔 coastal pixels

Taylor diagram on Spatial averaged precipitation

Normalized Taylor diagram from MAP time series at hourly and daily scales in Sicily and Sardinia.

GPM performs similarly in Sardinia and Sicily

GPM performances increase with aggregation time (hourly ---> daily)

Spatial averages of performance indices computed on 0,1° grid-cells at different aggregation time scales (from 1 hour to 60 days)

Performances of GPM-IMERG v04 precipitation products were evaluated against dense raingauge networks in Sardina and Sicily, characterized by **long see-land borders** and **complex morphology**

- *GPM* satellite data slightly overestimates rainfall over the study areas (confirming results in other areas), but they are in agreement with the interpolated raingauges data.
- Metrics based on total volume above a given threshold indicate better performances than those simply computed on occurrences above the same threshold .
- GPM products have some drawbacks near the coastal regions, showing worst performances than internal land areas.
- Accuracy of *GPM* products increase with elevation.
- Performances improve as the temporal aggregation increases.

