

MOXXI 2019 Topical Conference New York, 11-13/03/2019

The H SAF products and services: new products for operational hydrology Flavio Gattari H-SAF Project Management

HSAF

Satellite Application Facility in Support to Operational Hydrology and Water Management

- to provide satellite-derived products from existing and future satellites with sufficient time and space resolution to satisfy the needs of operational hydrology. Identified products:
 - precipitation (liquid, solid, rate, accumulated);
 - soil moisture (at large-scale, at local-scale, at surface in the roots region);
 - snow parameters (detection, cover, melting conditions, water equivalent);
- to perform continuous quality assessment and independent validation of the usefulness of the products for facing floods, landslides, avalanches, and managing water resources

Civil Protection, Risk Management, Hydrological applications, Nowcasting, Hydrology and water management, Climate,

NWP

HSAF The Consortium and Partners

SAF Projects	1997 Developments and Initial Operations	2007 CDOP	2012 CDOP-2	2017 2022 CDOP-3
NWC SAF				
OSI SAF				
AC SAF				
NWP SAF				
CM SAF				
ROMSAF				
LSA SAF				
H-SAF				
			C	urrent Phase

HSAF The Context: The SAF Network

The H SAF Products

HSAF H-SAF Operational Products

Key Points

- Products are provided in NRT
- Their timeliness is compliant with the needs of operational users: some of the products are provided within 15 minutes from last received image
- Operational provision:
 - > 24/7 service
 - Full operational support
- Long term perspective (up to 2032)
- High accessibility: EUMETCast dissemination, ftp direct download, orders

Precipitation Products

H01 P-IN-SSMIS	Precipitation rate at ground by MW conical scanners	Operational
H02A/B P-IN-MHS	Precipitation rate at ground by MW cross-track scanners	Operational
H03B P-IN-SEVIRI	Precipitation rate at ground by GEO/IR supported by LEO/MW	Operational
H15A P-IN-SEVIRI-CO	Blended SEVIRI Convection area / LEO MW Convective Precipitation	Pre- operational
H05B P-AC-SEVIRI	Accumulated precipitation at ground by blended MW and IR	Operational

EUMETSAT H-SAF Operational Products: precipitation H SAF P-IN-SSMIS / H01 new. rel.

Cloud Dynamics and Radiation Database (CDRD)

Bayesian Algorithm for conical scanners

(Sanò et al., TGRS, 2013, Casella et al., TGRS, 2013; Smith et al. Mugnai et al. NHESS, 2013)

- Use of MW conical scanners (Tb) (DMSP-SSMIS);
- Physically-based Bayesian technique;
- A synthetic a-priori database built from cloud model generated microphysical profiles coupled to RTE model;
- Use of dynamical-thermodynamical-hydrological (DTH) model-derived variables to reduce *ambiguity* problem of retrieval solution; DTH variables from ECMWF forecast/analysis are used as additional input;
- Precipitation phase and Quality index evaluation.
- Proc. Time: < 2 min (H-SAF area), Hor. Res.: ≅15 km

EUMETSAT H-SAF Operational Products: precipitation H SAF P-IN-MHS / H02 new. rel.

PMW Neural-net Precipitation Retrieval (PNPR) Algorithm for cross-track scanners (Mugnai et al., NHESS, 2013b, Sanò et al., AMTD, 2014)

- Use of MW cross-track scanners (Tb) (NOAA and MetOp);
- Training database built from same cloud resolving simulations as CDRD;
- New optimal Artificial Neural Network (ANN) algorithm, one ANN for all surface backgrounds;
- The Full Disk Algorithm uses two ANNs (ANN-A for European Area, ANN-B for African Area) trained by the two Databases.
- <u>Correction of MetOp-A channel [AMSU-A Channel 7 (54 GHz)] using a specific ANN.</u>
- Input: AMSU-A/MHS channels, additional channel derived variables;
- Geographycal inputs (i.e., latitude, season, topography) used as additional input;
- Precipitation phase and Quality index evaluation
- Proc. Time: < 30 sec (H-SAF area), Hor. Res.: ≅16-50 km

H-SAF Operational Products: precipitation

P-IN-SEVIRI/H03: Multi-platform algorithm: BLENDING Technique

2017 May 27 16:06:47 Production SATELLITE AREA COMET Algorithm ISAC CNR---- ADEUMETSAT----

The "Rapid Update" tecnique allows to compute instantaneous rain intensities at the ground at the geostationary time-space scale (Turk et al. 2000, Torricella et al. 2007).

It is based on a blended MW-IR technique that correlates, by means of the statistical probability matching, brightness temperatures measured by the IR geostationary sensors and PMW-estimated precipitation rates at the ground.

11-13/03/2019

H-SAF Operational Products: precipitation

P-IN-SEVIRI-CO / H15A: BLENDING Technique + NEFODINA

H-SAF Operational Products: precipitation

EUMETSAT H-SAF PR-OBS-5

60°

45

30

15°

0°

-15°

-30

-45°

-60

Blend

GM

60

45

30

15

-15

-30

-45

-60

-60

5 10 15 20 25

-30°

Accumulated Precipitation in the previous 24 hours

60

15

30

-15

30

-45

-60

60°

50

P-AC-G-SEVIRI / H05 Accumulated Precipitation

CMD 2017 Sep 16 00:38:12 --- Production_SATELLITE_AREA_C.N.M.C.A-----Algorithm_I.S.A.C._C.N.R.--

30

35 40 45

0°

Blending of: SEVIRI IR + SSM/I-SSMIS MW + AMSU MW: 20170916 0000

Precipitation: Case studies

EUMETSAT H-SAF PR-OBS-3 Instantaneous Rain Rate retrieved from IR-MW blending data

Precipitation: Case studies

EUMETSAT H-SAF PR-OBS-3 Instantaneous Rain Rate retrieved from IR-MW blending data

Strategy and foreseen improvements

New MW based Products

H18	Precipitation rate at ground by MW	Algorithms
P-IN-ATMS	cross-track scanners (Suomi NPP ATMS)	assessed
H23 P-DM-PMW	High frequency MW delineation of cloud areas with new development of hydrometeors (MHS)	Expected Operations in 2019

EUMETSAT

H SAF

Integration of Precipitation/Soil Moisture Products

		Algorithm assessed
H64	Precipitation/Soil Moisture	
P-AC-SM2RAIN	integrated product	Expected
		Operations
		in 2019

Integration of Precipitation/Soil Moisture Products

Indian Ocean Data Coverage (IODC) Products

H63 P-IN-SEVIRI_E	Precipitation rate at ground by GEO/IR supported by LEO/MW	Algorithm assessed
H90 P-AC-SEVIRI_E	Accumulated precipitation at ground by blended MW and IR	Expected Operations in 2019

MTG-based Products

H40 P-IN-FCI	Precipitation rate at ground by GEO/IR supported by LEO/MW and MTG FCI	Algorithms assessed
H42 P-AC-FCI	Accumulated precipitation at ground by blended MW and IR and MTG FCI	Expected
H50 P-IN-LI	Rainfall intensity from MTG LI	Operations in CDOP4

EPS-SG based products

H70 P-IN-MWS	Precipitation Rate at ground by EPS-SG MWS	Expected
H71 P-IN-MWI	Precipitation Rate at ground by EPS-SG MWI	in CDOP-4

Soil Moisture NRT Products

H08 SSM ASCAT NRT DIS	Disaggregated Metop ASCAT NRT SSM at 1 km NRT	Pre- Operational
H101 SSM ASCAT-A NRT O12.5	Metop-A ASCAT NRT SSM orbit geometry 12.5 km sampling	Operational
H102 SSM ASCAT-A NRT O25	Metop-A ASCAT NRT SSM orbit geometry 25 km sampling	Operational
H16 SSM ASCAT-B NRT O12.5	Metop-B ASCAT NRT SSM orbit geometry 12.5 km sampling	Operational
H103 SSM ASCAT-B NRT O25	Metop-B ASCAT NRT SSM orbit geometry 25 km sampling	Operational
H14 SM-DAS-2	Soil Wetness Profile Index in the roots region retrieved by Metop ASCAT surface wetness scatterometer assimilation method	Operational

Soil Moisture Data Records

EUMETSAT

E H SAF

H25 - SSM ASCAT DR2015 TS12.5	Metop ASCAT DR2015 SSM time series 12.5 km sampling	Released
H109 - SSM ASCAT DR2016 TS12.5	Metop ASCAT DR2016 SSM time series 12.5 km sampling	Released
H111 - Metop ASCAT SSM CDR2016	Metop ASCAT DR2017 SSM time series 12.5 km sampling	Released
H113 - Metop ASCAT SSM CDR2017	Metop ASCAT DR2018 SSM time series 12.5 km sampling	Released
H27 SM-DAS-3	Scatterometer Root Zone Soil Moisture (RZSM) Data Record, based on ERS-SCAT and ASCAT-A assimilation, at 16km resolution	Released
H140 SM-DAS-DR2018-EXT- 16km	XT- Extension of H27 for 2015-2016	

SSM ASCAT NRT DISSmall-scale surface soil moisture by radar/ H08scatterometer [1 km, ASCAT/SAR]

SSM ASCAT-A NRT / H16, H101, H102, H103

EUMETSAT

H SAF

ASCAT NRT SSM orbit geometry (12,5 / 25 km sampling)

SM-DAS-2 / H14

Soil Moisture Profile Index in the roots region retrieved by surface wetness scatterometer assimilation method

In development Soil Moisture products

Strategy and foreseen improvements

Higher resolution

For Surface Soil Moisture

Higher resolution

For Root Zone Soil Moisture

Transition to EPS-SG

From ASCAT to SCA, both surface and Root Zone Soil Moisture

CDOP3

CDOP4

In development Soil Moisture products

H28 SSM ASCAT NRT DIS	Disaggregated Metop ASCAT NRT SSM at 1 km	Higher Resolution
H26 RZSM-ASCAT-NRT-10	Metop ASCAT NRT Root Zone Soil Moisture 10km resolution	Higher Resolution
H122→H124 SSM ASCAT-A/B/C NRT O6.25	ASCAT NRT SSM orbit geometry 6.25 km sampling	Higher Resolution
H73 SSM SCA NRT DIS	Disaggregated Metop-SG SCA NRT SSM at 1 km	Transition to EPS-SG SCA
H80→H83 SSM SCA-1/2B NRT O6.25/O12.5	 Metop-SG SCA-1B H80 NRT SSM orbit geometry 6.25 km sampling H81 NRT SSM orbit geometry 12.5 km sampling Metop-SG SCA-2B H82 NRT SSM orbit geometry 6.25 km sampling H83 NRT SSM orbit geometry 12.5 km sampling 	Transition to EPS-SG SCA
H76 RZSM-SCA-NRT-10	176root zone soil moisture transition toCA-NRT-10SCA (res. 10 km, accuracy R > 0.65)	
ASCAT SSM	Yearly release	

Snow Products

H10 SE-E-SEVIRI	Snow detection (snow mask) by VIS/IR radiometry	Operational
H11 WS-E	Snow status (dry/wet) by MW radiometry	Operational
H12 FSC-E	Effective snow cover by VIS/IR radiometry	Operational
H13 SWE-E	Snow water equivalent by MW radiometry	Operational

SE-E-SEVIRI / H10 Snow detection (snow mask) by VIS/IR

- Cycle: Daily
- Coverage: Europe, Northern Africa, Middle East
- Grid/Projection: Part of Meteosat/SEVIRI 0° fulldisk, GEOS projection
- Resolution: Variable from 3 km to 10 km, depending on distance from subsatellite point
- Formats: HDF5,PNG quicklook

Snow status (dry/wet) by MW

Coverage: 25 ° W
 45 ° E, 25 ° N –
 75 ° N

WS-E / H11

-

- Grid/Projection: Equidistant cylindrical
- Resolution: 0.25 ° x 0.25 °
- Formats: gzip
 compressed
 GRIB2, PNG
 quicklook image

FSC-E / H12 Effective snow cover by VIS/IR

- Cycle: Daily
- Coverage: 25 ° W
 45 ° E, 25 ° N –
 75 ° N
- Grid/Projection: Equidistant cylindrical
- Resolution: 0.01 ° x 0.01 °
- Formats: gzip compressed GRIB2, PNG quicklook image

Ν

H-SAF Operational Products: Snow

SWE-E / H13 Snow water equivalent by MW

300+ Cycle: Daily 250 Coverage: 25 ° W – Snow Water Equivalent (mm 45 ° E, 25 ° N – 75 ° 200 Grid/Projection: Equidistant 150 cylindrical Resolution: 0.25 ° x -100 0.25° Formats: gzip 50 compressed GRIB2, **PNG** quicklook 0 No data image

SE-DF-SEVIRI / H31 MSG/SEVIRI snow extent

- Daily
- Full MSG/SEVIRI 0° disk, GEOS projection
- Resolution: 3 km (nadir)
- Based on single image classifications which are merged to create daily product
- Processed in the LSA SAF

MOXXI 2019 Topical Conference

SE-G-AVHRR / H32 Metop/AVHRR snow extent

Metop/AVHRR snow 10.4.2017

EUMETSAT

H SAF

April 14, 2018

NASA Worldview (MODIS, Suomi NPP)

MSG/SEVIRI 14.04.2018

Ņ

HSAF The future: in development Snow products

Strategy and foreseen improvements – Snow Products

EUMETSAT The future: in development Snow products

H34	Snow detection (snow mask) by VIS/IR radiometry	The H10 algorithm applied to full disk	Full MSG/SEVIRI 0° disk, GEOS projection
H35	Effective snow cover by VIS/IR	The H12 algorithm applied to Northern Hemisphere	Coverage: 180 ° W – 180 ° E, 0 ° N – 90 ° N Resolution: 0.01 ° x 0.01 °
H43 SE-D-FCI	Snow detection (snow mask) by VIS/NIR of MTG FCI	MTG-based Product Expected operations in CDOP-4	Daily Full MTG/FCI disk Satellite grid Resolution: about 1 km (nadir)
H65 SWE-H	New Global (hemispherical) SWE 25 km resolution	Expected operations in 2019	Cycle: Daily Coverage: Northern Hemispherical Grid/Projection: "EASE-Grid" - Lambert's equal-area Resolution: 25 km x 25 km Formats: HDF5
H85 SE-G-MI	Metop-SG/Metimage snow extent	Metop-SG/Metimage based product Expected operations in CDOP-4	Daily Global Grid/projection: TBD Resolution: about 1 km

EUMETSAT The future: in development Snow products

The H SAF Services

Quality Monitoring Programme provides a continuous assessment of the products quality and performances by evaluating statistical scores and case study analysis on the base of comparison between satellite products and ground data

HSAF Quality Monitoring Programme

The Quality Monitoring Cluster is composed of experts from the National Meteorological and Hydrological Institutes of 8 European countries under the coordination of the Italian Civil Protection Department (DPC). The PPVG uses ground measurement for validation: for precipitation products, for example, **rain gauge** and **radar** data are used.

Country (Acronyms)	Institutes	
Belgium (BE)	IRM	
Bulgaria (BG)	NIMH	
Germany (DE)	BfG	
Hungary (HU)	OMSZ	
Italy (IT-DPC, IT- UNIFE)	DPC, UniFe	
Poland (PL)	IMWM	
Slovakia (SK)	SHMU	
Turkey (TU)	ITU, METU, TSMS	
Country	Total number of	Average minimum
	gauges	distance (km)
Belgium	89**	distance (km) 11.2
Belgium Germany	89** 1300	distance (km) 11.2 17
Belgium Germany 59 C-band Ra Italy	89** 1300 adars	distance (km) 11.2 17 9.5
Belgium Germany 159 C-band Ra Italy Poland	89** 1300 2600 330-475	distance (km) 11.2 17 9.5 13.3

* the number of rain gauges could vary from day to day due to operational efficiency within a maximum range of 10-15%.

** only in the Wallonia Region

*** only covering the western part of Anatolia

Quality Monitoring Programme Validation Methodology

EUMETSAT

🗲 H SAF

Hydrovalidation Programme

MOXXI 2019 Topical Conference - New York, 11-13/03/2019

EUMETSAT

🗲 H SAF

Hydrovalidation Programme

Test sites and models

Country	Basin	Model	
Finland	Ounasjoki	HOPS	
	Simojoki		
	Kiiminkijoki		
Belgium	Demer-Scheldt	SCHEME	
	Ourthe-Meuse		
Germany	Blies	HBV	
	Lahn		
	Kocher		
	Main]	
Slovakia	Nitra	Hron-NAM	
	Kysuca		
	Hron		
Poland	Soła	ΗΒV	
	Raba		
	Wkra		
	Czarna		
Italy	Orba	Continum	
Bulgaria	Iskar River	ANN	
	Chepelarska	Isba-Modcou	
	Varbica river	Mike-11/NAM	
Turkey	Killi		
	Ulus	ANN	
	Karasu	SRM	
	(Upper Euphrates)	HBV	

Ounasjoki (no 1), Demer-Scheldt (no 2), Ourthe-Meuse (no 3), Blies (4), Lahn (5), Kocher (6), Main (7), Nitra (8), Kysuca (9), Hron (10), Soła (11), Raba (12), Czarna and Lagowianka (13), Wkra (14), Orba (no 15), Iskar River (no 16), Chepelarska (no 17), Varbica river (no 18), Killi subbasin in Susurluk Basin (19), Ulus subbasin in Western Black Sea Basin (20), Upper Euphrates (21, Karasu)

MOXXI 2019 Topical Conference - เงคพ งดาห์, นา-นร/บร/ 2ับบร

Trend in user registration

Thank you for your attention

http://hsaf.meteoam.it/