

Jeffrey Laut, Manifold Robotics Inc.

MOXXI 2019 – New York, NY

Origins in NSF-supported research project at NYU "Brooklyn Atlantis"

Why small, unmanned boats?

Our autonomous boat

- 86 cm long, weighing 16 kg
- Two fixed thrusters for propulsion and differential steering
- Adjustable width
- Durable, aluminum construction
- GPS-based autonomy
- Optional LiDAR for obstacle avoidance

Example application: Pre/Post Dredge Surveys

Peconic Bay, Long Island

Example application: Pre/Post Dredge Surveys

Peconic Bay, Long Island

Mission parameters:

- 144 waypoints
- Transect spacing: 5 m (16.4 ft)
- Total area: 2600 m² (6.5 acres)
- Total distance: 6 km (3.7 miles)

Mission parameters:

- 144 waypoints
- Total area: 2600 m² (6.5 acres)
- Total distance: 6 km (3.7 miles)
- Transect spacing: 5 m (16.4 ft)

Mission parameters:

- 144 waypoints
- Total area: 2600 m² (6.5 acres)
- Total distance: 6 km (3.7 miles)
- Transect spacing: 5 m (16.4 ft)

Mission stats:

- Total time: 74 minutes
- Avg speed: 4.8 km/h (3 mph)
- Over 8,000 depth measurements

Bathymetric map of collected data

Autonomy Challenges: Uncertain shoreline locations

Autonomy Challenges: Uncertain shoreline locations

Autonomy Challenges: Unforeseen obstacles

Barriers to adoption

- Floating obstructions or other unforeseen obstacles
- Uncertain shoreline and shallow water area locations
- Ship or boat traffic, or recreational boaters, canoers, and kayakers
- Vegetation not visible from aerial photos or from the shoreline
- Training and setup time for autonomy

Working towards a robust solution

- Shallow water area detection using echosounder
- LiDAR and sonar for obstacle avoidance
- Computer vision and machine learning for intelligent obstacle characterization
 - Recently awarded SBIR grant from National Science Foundation to develop these solutions

Manifold robotics

Acknowledgements

