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» Motivation and Focus

> Accurate, low-cost, resilient, near real-time water quantity
and quality monitoring systems

» Sensor Network Components

> Anatomy of sensor network

» Remote Sensing

> Non-contact water level sensing

» Clemson University Hunnicutt Creek Test Bed

> Comparison of three level sensing technologies
> Level data throughout a rain event
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Intelligent River  Motivation

South Carolina is enduring some of its worst flooding from
Florence, more than a week after it departed

Carclinas Precipitation Patterns & Probabilities An Atlas of Hydroclimate Extremes

1998-2002 Drought

Beginning in 1998, many areas in the Carolinas experienced several years of below-normal

Introd
niredustion precipitation: precipitation deficits over the next four years were among the largest ever recorded.

Agriculture The meterological drought quickly became an agricultural one: farmers and foresters were
Forestry particularly affected. The prolonged duration of the drought had severe hydrological effects, with

Water Supply & Quality the cumulative shortfall of precipitation resulting in record lows for streamflows, groundwater

levels, and reservoir storage.
MNaotes 9

Under calm, blue skies, eight days after Florence’s final drops rained down, parts of northeast South
Carolina and southeast North Carolina are experiencing devastating flooding from the long-departed

hurricane. Entire communities are underwater as some rivers continue to rise.




Anatomy of a Sensor
Water Network

Data Driven

Questions Answers
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Level Sensors

D

Remote sensing of water level has distinct advantages
over direct, contact sensing. Sensors placed above water

bodies should be able to last for years without human
iIntervention. New sensor advances in distance sensing are
lowering the cost of accurate water level measurement.
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LoRaWAN Network
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A commercial LoRaWAN gateway has been deployed to serve the

campus sensing community. Redundant gateways are planned.

Approximate LoRaWAN network LoRaWAN Gateway
coverage live at Clemson.




Headwaters Ultrasonic
Ranging Sensor

MaxBotix
Ultrasonic Level

Sensor




Ultrasonic Level Sensor Example
Headwaters Ultrasonic _
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LIDAR Level Deployments

LiDAR
Level Sensor




-
LIDAR Level

Deployments - -

Reported Accuracy +2.5mm
Observed Accuracy +2.5mm -+ 10mm
Cost (with case) S20

Potential Issues Light Interference

LIDAR Sensor at New Newman Road
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77 Ghz Radar
Level Sensor




Radar Deployment

77 Ghz Radar
Level Sensor

Radar Level Sensor Example

Range
Reported Accuracy
Observed Accuracy

Cost

RADAR Sensor at Old Stadium Road

¥
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~10m
+3mm
~+5mm

~$300




Radar Data with Rainfall

RADAR Sensor at Old Stadium Road
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Stacked Sensor Readings

Ultrasonic Sensor
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System Dashboard
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What about the data?
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Metadata that describes all aspects of the sensors and deployment
Systems.

Location-aware data storage and analytics with extensive
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Current Efforts

« Developing rating curves and modeling water flows with PCSWMM

» Testing radar-flow based methods to automate rating curves

« Deploying 25 additional water level sensor nodes and water quality
sensors in the testbed

« Determining packet loss and optimal sampling frequency

« Validating accuracy with pressure transducer loggers

« Using LIDAR UAV based terrain models to visualize surface hydrology
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