Rainfall maps from networks of citizen weather stations for urban rainfall information

Rainfall maps from networks of citizen weather stations for urban rainfall information

Marc Schleiss

Rinske Hutten Deltares

Jeroen Schoester Lotte de Vos

Tian Xin

Opportunities of citizen observations for urban hydrometeorology:

"What can we learn from potentially ubiquitous, but intrinsically noisy data generated from citizen observations?"

4

Citizen Weather Stations

760 CWS in 70x700 km² window around Rdam:

1 station every 6.6 km²

KNMI (Nat.W.Service): ~ 1 every 1000 km² (automatic weather stations) ~ 1 every 100 km² (manual gauges)

Citizen Weather Stations Data Quality

- Most stations underestimate compared to professional gauge
- Consistent overestimation: due to incorrect TB volume
- Hard to detect: missed rainfall

Courtesy: Rinske Hutten

QC filter to detect undetected rain

CWS filter

- Median precipitation depth of neighbouring stations (min. 3) within 8-km radius: Pmed,n(t) >0 & P_{CWS}(t)=0
- Benefit: No other rainfall data sources are required than CWS network
- Assumptions: majority of neighbouring CWSs have correct recording
- *Limitations:* Filter requires at least 3 neighbouring CWSs

Radar filter

- Overlying radar pixel : P_{rad}(t)>0.06 mm & P_{CWS}(t)=0
- *Benefit:* Continuous availability of required information to perform filter, therefore better suitable for areas with sparse CWS network
- Limitations:
 - Requires additional rainfall data source
 - Disagreement between radar and gauges on rainfall occurrence
 - Susceptible to radar artefacts

QC filter to detect undetected rain - control case -

OC filter for undetected rain

Rainfall information from citizen rain gauges

Rainfall information from citizen rain gauges

Interpolation method: weighted distance interpolation - weights depending on distance (Variogram) and type of station

Interpolated rainfall maps

Interpolated rainfall maps

Citizens sensing rain:

Knowledge, Empowerment, Bottom-up data collection

Data-> Information: Huge challenges ahead to achieve sufficient density and quality

Back-up slides

Citizen science: examples from the global south

Trans-African Hydro-Meteorological Observatory

Citizen Science

Raindrop counter

Ongoing tests: Tanzania (rain season)

Citizen science:

Knowledge, Empowerment, Bottom-up data collection

Data-> Information: Huge challenges ahead to achieve sufficient density and quality

