TP-DownHole: a ruggedized open-source pressure and temperature sensor designed for water-level measurements

Andrew D. Wickert^{1,2,3} Bobby Schulz^{1,3,4} G.-H. Crystal Ng^{1,2} Kelly J. Hokanson⁵ Keith B. Rapp⁶

¹Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA ²Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA ³Northern Widget LLC, Saint Paul, MN, USA

⁴Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA ⁵Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada

Acknowledgments

Funding

• University of Minnesota

And: encouragement and enthusiasm from the community

Overview

- 1) Background: objective in making water-level measurements
- 2) Development and production (and how to build your own)
- 3) Data logging
- 4) Example use cases
 - a) Oil spill (Iowa USA)
 - b) Manoomin/Psi η (wild rice)

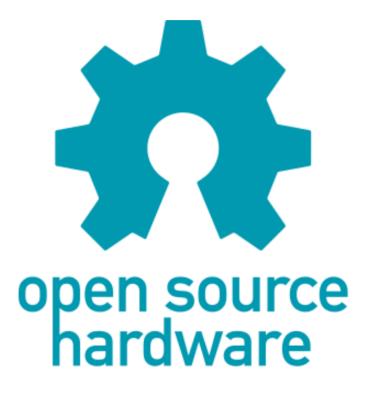
Why water level?

- One of the most **routine** environmental measurements
- Gradients in water level provide information on **discharge**
- Widely **applicable** across multiple academic fields, government / public service, and industry

- Why Pressure?
 - Both **surface water** and **groundwater**
 - So we want to support long cables for deep measurements
 - And we want to screen out sediment
- **Temperature** as well
 - Important tracer
 - Straightforward measurement

Why water level?

- Many sensors exist
 - Schlumberger Diver
 - Solinst LevelLogger
 - Onset/Hobo



- Our goals
 - Open source
 - Know all potential errors
 - Easily modify/upgrade
 - Can construct your own
 - "Farm-to-Table" science
 - Less expensive
 - Water pressure
 - Barometric correction
 - Telemetry with proper logger

Background and Motivations

Open-source development

- Copyleft
 - Software: GNU GPL v3
 - Hardware: CC BY-SA
- Facilitates free flow of knowledge between university and company
- Facilitates collaboration between and among many small groups: required to be competitive

Open-source development

	orthern W	idget LL		o@northernwidget.com
Repositories 40	People 12	Teams 2	Projects o	Settings
Find a repository			Type: All -	Language: All -

Deployments

Code which has been used for given deployments all around the world

C++ d GPL-3.0 Updated 4 days ago

MCP3421

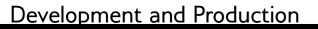
A library to interface with the MCP3421 18 Bit single channel ADC, used on the TP-Downhole

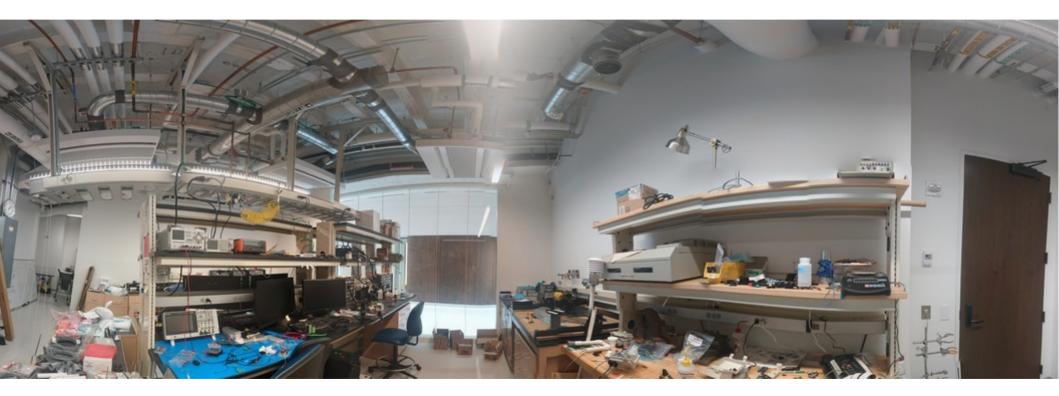
C++ ¥1 Updated 9 days ago

Arduino_Boards

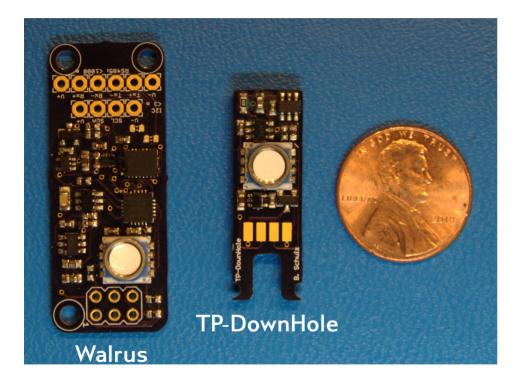
Board definition files for ALog data loggers (Arduino-Compatible)

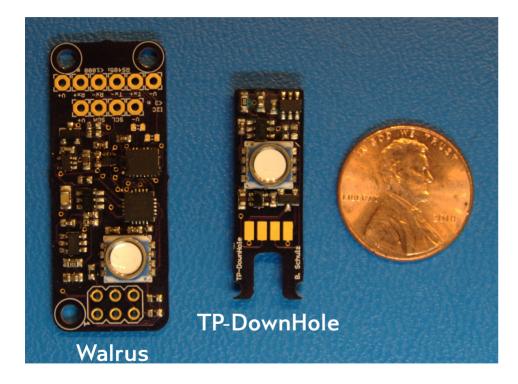
- All code, hardware designs, and documentation are available on GitHub
- Open-source approach eases Dublication


Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-591 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 7 December 2018 © Author(s) 2018. CC BY 4.0 License.


Open-source Arduino-derived data loggers designed for field research

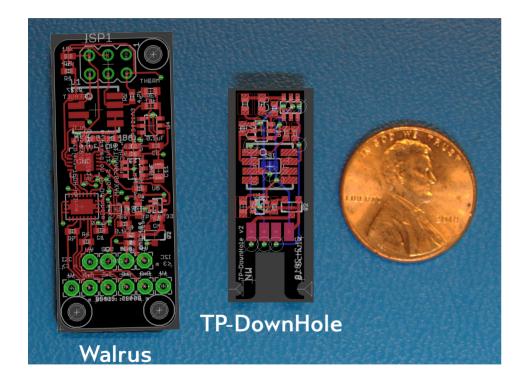
Andrew D. Wickert $^{1,2,3},$ Chad T. Sandell 3, Bobby Schulz $^{1,3,4},$ and G.-H. Crystal $Ng^{1,2}$


Development lab – University of Minnesota

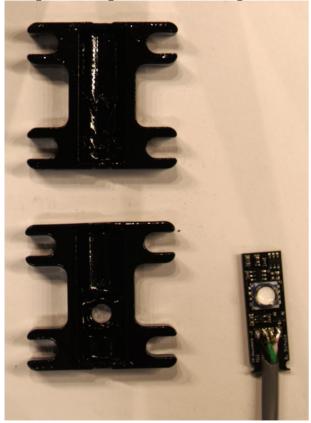


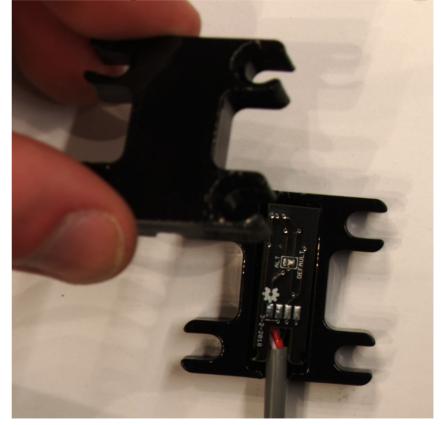
The TP-DownHole and (TPDH)-Walrus

- "Temperature-Pressure Down Hole"
- TP-DownHole (~\$35 parts, \$200 built)
 - Original design, board 9.53x28.96 mm
 - After encapsulation, can fit in 1/2" (barely) or
 5/8" (more easily) tubing for multi-level wells
 - Potted in epoxy via injection molding
- Walrus (~\$35 parts, \$150 built)
 - Single-sided board for easier assembly
 - Can pot in pour-over resin
 - Board: 16x40 mm


The TP-DownHole and (TPDH)-Walrus

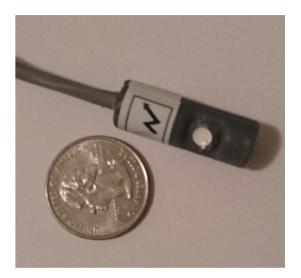
- Pressure transducer
 - MS5803-series MEMS
 - ~\$15
 - Different models from barometric to 300 m water depth
 - ⁻ 2 atm model is precise to 1–2 mm
- SMD thermistor with voltage divider and ADC
- ATTiny1634 microcontroller with custom firmware; communicates with logger
- Communications (both)
 - I^2C (3 m or less)
 - RS485 (< 1 km)


The TP-DownHole and (TPDH)-Walrus

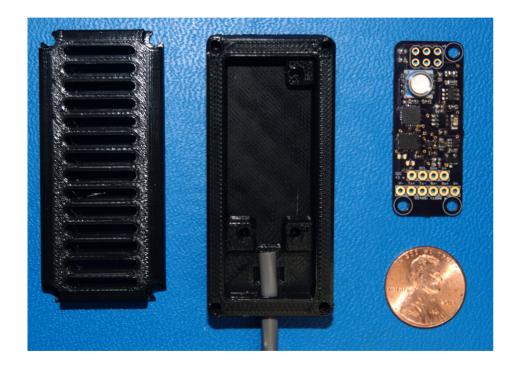


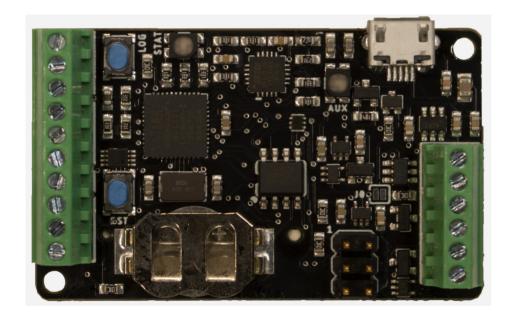
- Pressure transducer
 - MS5803-series MEMS
 - ~\$15
 - Different models from barometric to 300 m water depth
 - ⁻ 2 atm model is precise to 1–2 mm
- SMD thermistor with voltage divider and ADC
- ATTiny1634 microcontroller with custom firmware; communicates with logger
- Communications (both)
 - I²C (3 m or less)
 - RS485 (< 1 km)


Epoxy encapsulation: injection molding



Epoxy encapsulation: injection molding

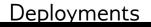


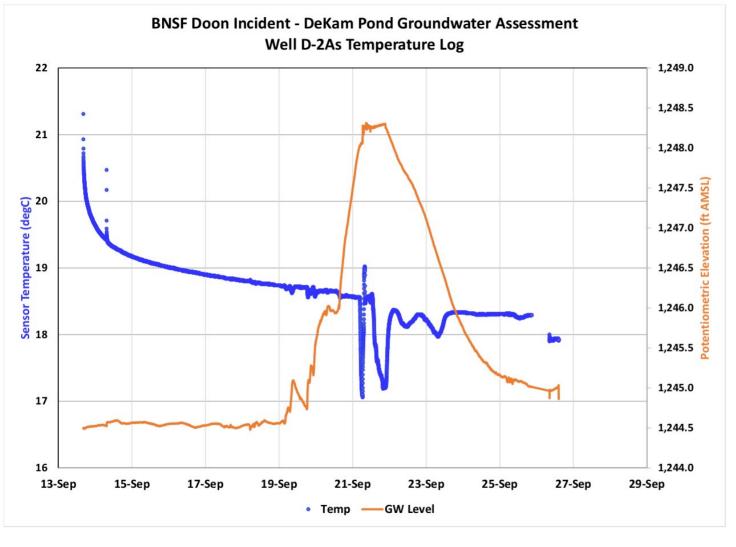

TPDH-Walrus: Simpler pour-over housing

- Attach to bottom with screws
- ICSP header can remain exposed / accessible in case firmware updates are needed
- Simple 3D printed housing
- 3D printed screen or can substitute a user-selected mesh to better filter sediment

Logging the data

Data logging

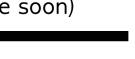

- Margay data logger: v0.2 (expected April 2019) has built-in barometric pressure measurement (BME-280)
- Resnik data logger (expected May 2019): telemetry and built-in barometric pressure
- Any data logger that supports I²C or RS-485.


Groundwater flow after an oil spill in Iowa, USA

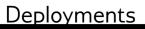
Response to:

- Natural hydrology
- Tests by Rapp's team

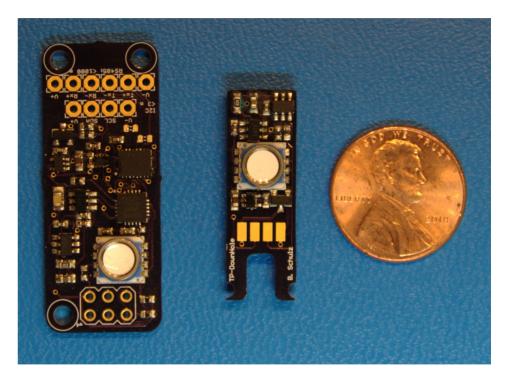
Deployments



Deployments


Monitoring wild rice lakes (Minnesota & Wisconsin)

- Concerns about sulfur geochemsitry – reduction to H₂S can be toxic for roots, but depends on reactive transport
- Need to monitor water levels and groundwater flow paths
- Multiple stakeholders and legal structures
 - Treaties with Ojibway
 - Fe/Cu/Ni Mining (Pt/Pd mining possible soon)



Summary

Open-source data logger for water level (and temperature). Low cost – and you can build yourself!

github.com/NorthernWidget github.com/NorthernWidget-Skunkworks

